Monday, May 8, 2017

Replicating Anomalies

I blogged a few weeks ago on "the file drawer problem".  In that vein, check out the interesting new paper below. I like their term "p-hacking". 

Random thought 1:  
Note that reverse p-hacking can also occur, when an author wants low p-values.  In the study below, for example, the deck could be stacked with all sorts of dubious/spurious "anomaly variables" that no one ever took seriously.  Then of course a very large number would wind up with low p-values.  I am not suggesting that the study below is guilty of this; rather, I simply had never thought about reverse p-hacking before, and this paper led me to think of the possibility, so I'm relaying the thought.

Related random thought 2:  
It would be interesting to compare anomalies published in "top journals" and "non-top journals" to see whether the top journals are more guilty or less guilty of p-hacking.  I can think of competing factors that could tip it either way!

Replicating Anomalies
by Kewei Hou, Chen Xue, Lu Zhang - NBER Working Paper #23394
The anomalies literature is infested with widespread p-hacking. We replicate the entire anomalies literature in finance and accounting by compiling a largest-to-date data library that contains 447 anomaly variables. With microcaps alleviated via New York Stock Exchange breakpoints and value-weighted returns, 286 anomalies (64%) including 95 out of 102 liquidity variables (93%) are insignificant at the conventional 5% level. Imposing the cutoff t-value of three raises the number of insignificance to 380 (85%). Even for the 161 significant anomalies, their magnitudes are often much lower than originally reported. Out of the 161, the q-factor model leaves 115 alphas insignificant (150 with t < 3). In all, capital markets are more efficient than previously recognized.